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Abstract. We developed successive extensions of the SIR model in order to track the dynamics of the 
SARS-Cov2 disease. The analysis of health system available data is published in a chronicle accessible on 
the net: https://corona-circule.github.io/lettres/. This chronicle was initiated on late march 2020 and up to 
now contains 50 issues. A constant concern was the reliability of the data: for instance, we very soon 
evidenced that the number of confirmed cases, because of the asymptomatic carriers and the erratic testing 
policy, was hugely underestimated. By the end of 2020 we made a basic change in the model which consisted 
in accounting for a constant contagiousness time (SIR-tcc) instead of the probabilistic evolution of the end 
of the infection assumed so far. Recently we completed this SIR-tcc model for the vaccination effects in 
order to properly track the evolution of the group immunity threshold. Calculations were performed using 
the Excel facility (Microsoft), allowing a manual fitting of the model parameters. The results have dealt with 
a large number of countries, but we focus here on the data regarding France. Further pieces of information 
are also presented, in order to help elucidating some the factors responsible for the complex history of the 
pandemic dynamics. (submitted dec 14th 2021) 

1 The epidemiological context 

1.1 The SARS-Cov2 virus  

The 21st century saw the emergence of three 
coronaviruses responsible for deadly severe 
acute respiratory syndromes in humans (SARS): SARS-
CoV [1,2], MERS-CoV [3], and SARS-CoV-2 [4,5] 
which is causing the COVID-19 disease. As for the first 
two, the reservoir host for SARS-CoV-2 is the bat [6]. 
Whereas palm civets [7] and dromedary camels [8] are 
recognized for the transmission of, respectively, SARS-
CoV and MERS-CoV from bats to humans, the SARS-
CoV-2 intermediate host is still not known. Like other 
respiratory pathogens, including influenza and 
rhinovirus, coronavirus transmission occurs through 
airborne droplets produced by sneezing, coughing, and 
breathing [9]. 

Coronaviruses are ribonucleic acid (RNA) viruses, 
their genetic material is a single-stranded RNA 
molecule, carrying four main structural proteins - Spike, 
envelope, membrane, nucleocapsid - and several non-
structural proteins [10]. The spike surface protein of the 
coronaviruses mediates their entry into host cells 
through a variety of receptors and entry mechanisms 
[11]. Like SARS-CoV, SARS-CoV-2 uses the 
angiotensin-converting enzyme 2 (ACE2) as a receptor 
to enter cells [12,13]. Inside the host cell, viral RNA is 
translated into non-structural proteins that supress the 
host genes expression in favour of the virus ones 

[14,15]. Then, viral RNA is replicated, translated and 
new virus particles are formed that will strike other host 
cells [16]. Infected cell fuses to neighbouring cells 
expressing ACE2, giving rise to massive individual 
respiratory cells that prosper for long and produce more 
and more new virus particles [17]. Beside the rapid virus 
replication, the innate immune cells response takes place 
with the secretion of pro-inflammatory cytokines and 
proteases [18]. This excessive inflammation, called 
“cytokine storm”, leads to acute respiratory distress 
syndrome and pulmonary oedema [6]. However, since 
the virus supresses the host genes expression, including 
those encoding proteins that alert the immune system, it 
escapes the immune response of the host. 

The consequences of Sars-CoV-2 infection vary 
greatly from one person to another. While 90% of the 
infected individuals are not very symptomatic or 
asymptomatic, 10% develop severe, or even critical, 
forms with pneumonia requiring an intensive care stay. 
The viral load is obviously a major risk factor. Age is 
also a major risk factor for the development of severe 
forms, with individuals over 65 years having the greatest 
risk of requiring intensive care [19], and men are more 
susceptible than women [20]. Nearly 25% of severe 
forms are due to a deficiency in the type 1 interferon 
(INF1) pathway, a cytokine usually produced rapidly by 
the immune system in response to a viral infection and 
whose main effect is to inhibit virus replication in 
infected cells). With 3-4% of INF1 gene alterations [21] 
and 15-20% of presence of autoantibodies neutralizing 
IFN1 and blocking its antiviral action [22-23]. The 
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presence of INF1 neutralizing autoantibodies is very 
rare before age 65 (0.2 to 0.5%) and then increases 
exponentially with aging to reach 4% between 70 and 79 
years, and 7% between 80 and 85 years. The causes and 
mechanisms of this increase in the general population 
remain to be elucidated, but it partly explains why age 
is a major risk factor in the development of severe forms 
of Covid-19. Defects in the gene encoding the toll-like 
receptor 7 (TLR7), an RNA intracellular receptor 
playing a major role in INF1 production, are found in 
1.8% of men with severe forms under age 65 [24]. The 
TLR7 gene being on the X chromosome explains why 
men are more frequently affected by severe Covid-19 
than women. 

1.2 SARS-CoV-2 variants 

The SARS-CoV-2 virus is constantly mutating and 
numerous SARS-CoV-2 variants have emerged, 
naturally selected for their higher transmissibility, 
lethality or capacity to escape the host’s immune 
response in comparison with the original virus (Table 1). 
Transmissibility is related to permeability and 
represents the ability of the virus to enter host cells. 
Lethality is the proportion of infected individuals who 
die from the infection in a given place, at a given time. 
Lethality is to be differentiated from virulence which 
corresponds to the propensity of the virus to harm its 
host. Virulence is quantified in the absence of specific 
care. The same variant will have a different lethality 
from one country to another depending, for example, on 
the quality of the hospital system, but its virulence will 
be unchanged. 

 
Table 1. Effects of the main SARS-CoV-2 variants, 

in comparison with the original virus, on their 
transmissibility, lethality, and ability to escape the host 
immune response [25-28]. 

Variant Transmis-
sibility Lethality Immune 

escape 
Alpha 
B.1.1.7 

43-90% 
higher No change Slightly 

increased 

Beta 
B.1.351 

1.5x 
higher 

Possibility 
increased 

fatality rate 
Higher 

Kappa & 
Delta 

B.1.617.1
&2 

2.6 x higher 

Elevated in 
Brazil (may 
be due only 
to healthcare 

system 
overload) 

Higher 

Gamma  
P.1 

1.7-2.4 x 
higher Higher Higher 

Epsilon 
B.1.427&

429 

19-24% 
higher 

Yet not 
known 

Slightly 
increased 

 
The most recent variant which is in the headlines at 

the end of 2021, Omicron (B.1.1.529), carries many 
mutations present in other variants. Of the 32 Omicron 
mutations in the spike protein, 16 are in the Delta 
variant. These known mutations seem worrying since 
they are linked to a greater infectivity and a better ability 
to escape the immune response. And numerous new 

mutations seem able to contribute to a further escape 
ability, and a more efficient virus replication [29-31]. 
Nevertheless, there is still a lot to understand about the 
Omicron variant at the biological, clinical, vaccination 
and epidemiological level. 

1.3 Vaccines 

In just one year, 322 candidate vaccines, based on the 
Wuhan virus, had been proposed and 9 were approved 
for use to adults, and in some cases to adolescents 
through various region-specific and regulatory agency 
approval procedures (Table 2).  

 
Table 2.  Characteristics of COVID-19 vaccines 

approved to date [32-33]. 
Vaccine 

manufacturer 
(vaccine 
name) 

Platform 
Efficacy (%) 

From 
trials 

For 
severity* 

Sinovac Biotech 
(CoronaVac) 

Inactivated 
virus 51 51 SC 

100 SD, H 
Sinopharm 

(BBIBP-CorV) 
Inactivated 

virus 78 100 SD, H 

AstraZeneca– 
University of 

Oxford 
(AZD1222) 

Viral vector 81 100 H 

Johnson & 
Johnson 

(Ad26.COV2-S) 
Viral vector 66 85 SD 

Gamaleya 
(Sputnik V) Viral vector 92 - 

Bharat Biotech 
(Covaxi) Viral vector 78 100 H 

Pfizer–
BioNTech 

(BNT162b2) 
mRNA 95 100 SD 

Moderna 
(mRNA-1273) mRNA 94 100 SD 

VECTOR 
(EpiVacCorona, 
NCT04780035) 

Protein 
subunit - - 

* SD: severe disease, H: hospitalization, SC: 
symptomatic COVID-19 disease. 
 

Three major vaccine technology platforms were 
exploited. In its most traditional form, the principle of a 
vaccine is to inoculate the virus against which we intend 
to prepare the immune system. To prevent the virus from 
causing disease, it will first be either inactivated (like 
the flu and polio vaccines) or attenuated (like the 
pertussis and tuberculosis vaccines). Viral vector and 
mRNA vaccines are of the so-called gene type. These 
technologies consist of inoculating the whole or parts of 
the virus genetic material, DNA or mRNA, so that the 
vaccinated organism himself will produce the 
immunogenic proteins. The carrier, or vector, is 
generally a benign virus, adenovirus, which will 
stimulate the immune response while remaining 
harmless. The protein subunit vaccine technology uses 
three peptides of the spike protein planted on a chimeric 
protein constituted of two parts (viral nucleocapsid 
protein and bacterial maltose-binding protein). The 
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vaccinated organism himself will produce the 
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generally a benign virus, adenovirus, which will 
stimulate the immune response while remaining 
harmless. The protein subunit vaccine technology uses 
three peptides of the spike protein planted on a chimeric 
protein constituted of two parts (viral nucleocapsid 
protein and bacterial maltose-binding protein). The 

vaccinated organism will respond by making antibodies 
against the Spike protein. This technology has already 
been used, for the hepatitis-B vaccine by example. 

Efficacy against symptomatic COVID-19 disease is 
calculated from end points defined in the clinical trial, 
severe disease, hospitalization, and/or symptomatic 
COVID-19 disease, which differ between trials, even for 
the symptom’s definition (Table 2). It is an important 
value for the approval of vaccines, but does not reflect 
the real-world impact, especially when trials have been 
performed on specific population (younger, healthy 
adults, individuals at risk of severe disease), and in the 
absence of the more recently reported SARS-CoV-2 
variants. It is thus essential to know the extent and 
duration of protection across all age groups and 
populations. Especially given the higher risk of severe 
form in the elderly (age > 70). The efficacy may be 
affected by various factors including the population, the 
vaccine, the vaccination schedules and the 
handling/administration of the vaccine. 

Most of these vaccines were developed against the 
Wuhan virus and showed an efficacity between 50% and 
95% (Table 3). Since numerous SARS-CoV-2 variants 
have emerged and continue to emerge, characterizing 
their impact on vaccines efficacy quickly became 
necessary. Their efficacy against the dominant variant 
today, Delta, remains very good (Table 3). 

 
Table 3.  COVID-19 vaccines efficacy according to 

SARS-CoV-2 variants [32-34]. 

Vaccine 
manufacturer 
(vaccine name) 

Efficacy (%) against variant 

Wuhan 
strain Alpha Beta Gam-

ma Delta 

Sinovac Biotech 
(CoronaVac) 

50 
70 - - - 59 

Sinopharm 
(BBIBP-CorV) 78 - - - - 

AstraZeneca– 
University of 

Oxford 
(AZD1222) 

55 
81 75 10 78 92 

Johnson & 
Johnson 

(Ad26.COV2-S) 
66 70 57 

72 68 - 

Gamaleya 
(Sputnik V) - - - - 90 

Bharat Biotech 
(Covaxi) - - - - 65 

Pfizer–BioNTech 
(BNT162b2) 95 94 86 51 88 

Moderna 
(mRNA-1273) 94 100 96 - 92 

 
While vaccines are reported to reduce the number of 

symptomatic COVID-19 cases, direct evidence for their 
effect on virus transmission is limited. The BNT162b2 
(Pfizer–BioNTech) vaccine has been shown to reduce 
the viral load [35]. And since a reduced viral load is 
associated with decreased transmission of the virus, 
these data together suggest that vaccination may reduce 
transmission. 

1.4 Data and websites  

Basic data for the number of confirmed cases, deceased 
persons and vaccine doses can be found on the various 
websites of National Health Systems [36]. Some sites 
update worldwide compilations [37, 38], while others 
built-up useful figures or maps which provide synthetic 
views of the evolution of the pandemic [39, 40]. Among 
them, the CovidTracker site [39] provides very easy-to-
read figures of crucial effects such as the age effect 
which was the constant background of our investigation.   

Prior to any analysis it may be noted that all reliable 
indicators (some are not!) of the pandemic are not 
necessarily sensible. For example, the number of 
removed people is not known in real time. 
Consequently, the number of infectious people at a 
given date is not known. Only the total number of 
infected persons, that is, which have been contaminated 
in the past, is provided by the health systems. Infected 
persons are usually termed “cases”, and the recognition 
of a new case is based on the positive result of a PCR 
test.  However, the number of cases is obviously 
underestimated due to asymptomatic carriers. This gives 
rise to the famous Trump theorem [40] “more covid19 
testing creates more cases”. On the contrary the number 
of reported deaths assigned to the COVID-19 appears to 
be (for most countries) reliable.  

On the example of France, we could check a good 
compliance between the number of deaths quoted during 
the first pandemic and the seasonal excess mortality. 
[CC 4]  

A model is used here for deriving correlations 
between the available sensible data, and eventually 
deriving the non-available ones, in order to elucidate 
some of the basic factors of the pandemic. The reverse 
way consists in using models for predicting the effects 
of possible factors. Such models may be extremely 
complex, they mostly deal with inhomogeneous effects 
and require the efforts of large groups or researchers 
[42-46]. Their conclusions were often used as guidelines 
for the present approach which modestly remained in the 
frame of the mean-field approximation.  

The analysis of health system available data is 
published in a chronicle accessible on the net: 
https://corona-circule.github.io/lettres/. For 
convenience the chronicle issues are abbreviated here 
“CC  n…” where n is the issue number  

2 The SIR model  

2.1 The uncorrected SIR model    

The historical SIR model, where S, I, R respectively 
stand for susceptible, infectious and removed people, 
was created by mathematicians almost one century ago 
[47]. It was widely used till now through its mean-field 
approach, which actually was the “special case” for 
which an analytical solution could be given, see [48] for 
a recent description (restricted to the special case).  For 
convenience we call this special case “the uncorrected 
SIR model”. The population is considered as a 3-state 
system which irreversibly evolves from the unstable 
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initial state S to the stable state R through the 
intermediate state I.  

2.1.1 Description of the uncorrected SIR model    

In the mean-field approach, S(t), I(t), R(t) are the 
time dependences of the population fractions associated 
with these 3 states. The probabilistic approach is based 
on transition rates β and   for the successive transitions 
S → I and I → R respectively, see figure 1. The 
peculiarity of the pandemic mechanism is that the flux 
S(t) → I(t) is proportional to the infectious fraction. This 
gives rises a self-accelerated dynamics at the beginning 
of the pandemic, a well-known phenomenon in the field 
of population dynamics. 

 

 
Fig. 1. A schematic view of the uncorrected SIR model.  
 

β the contamination rate is defined as the probability 
per unit time for a sane person to be contaminated due 
to meeting a contagious one. This crucial parameter 
depends on the intensity/frequency of contacts between 
people as a well upon the intrinsic contagiousness of the 
virus. It is strongly impacted by the irruption of virus 
mutants (the so-called variants) and by the level of social 
constraints (lock-in, curfew, travel or activity 
restrictions, masks...). For these reasons it is essentially 
time dependent. The adjustment of β (t) to the sanitary 
data (deceases, hospitalization, contamination cases) is 
a must for any sensible tracking of the pandemic.  

In the traditional approach  is the probability per 
time unit for a given infectious person to reach the 
removed state, dead or recovered. It is the reverse of the 
average duration of the contagious state (or 
contagiousness time).   

The master equation of the SIR system follows: 
dS/dt = -  S I ;  dI/dt =  S I -  I ; dR/dt =  I     (1) 

such as              dS/dt + dI/dt +dR/dt = 0   
because                 S(t) + I (t) + R (t) = 1 

The set of coupled differential equations (1) is easily 
solved by using an Excel spreadsheet (Microsoft 
Office), where time t is increased by steps of one day. 
The adjustment is performed manually thanks to the 
real-time display of the calculated curves. Our first 
calculation, dated 2020/03/31, see Figure 2, led to claim 
that the top of the first wave was nearly reached. The 
peak of daily cases actually occurred 1 – 2 weeks later.  

 
 

  Fig. 2. An early adjustment using the uncorrected SIR model 
based on the total case data for France (adapted from [CC 2]). 
IC is the fraction associated with the total number of cases  

In this preliminary calculation, all parameters were 
kept constant. The cluster size, β and ϒ were both 
adjusted. Later on, β was taken time-dependent, and γ 
was given a better value 1/14 days suggested by health 
system websites.   

A crucial problem was to properly assign the date of 
the beginning of the pandemics. In principle the use of 
continuous functions is not consistent with the existence 
of a “patient zero”.  In addition, the date of the first 
contamination was unknown – and till now remains so.  
In practice, this problem is solved by arbitrarily fixing 
the first day of the pandemics, and adjusting the initial 
(non-null) value of the infectious fraction. Here, day 1 
was arbitrarily fixed March 1, 2020.  

2.1.2 Initial dynamics   

The initial dynamics of the pandemic is exponential. 
Indeed for small t:   

S (t)  1 and  I (t)   0                 dI / dt  (- ) I  
       I (t)  I (0) exp { t / (- ) }  

The exponential is growing for  >  and decreasing 
in the opposite case.  

2.1.3 Reproduction rates    

The initial reproduction rate R0 is the average number of 
persons infected by each infectious person at the 
beginning of the pandemic. R0 = / , that is, the 
contamination rate x the contagiousness time. For R0 > 
1 the exponential speeds up, for R0 < 1 it slows down, in 
agreement with sec. 2.1.2.  

The value of R0 depends on both the virus 
contagiousness (which depends on the variant) and on 
the frequency of contacts between persons. Social 
restrictions tend to decrease the reproduction rate, while 
the irruption of each more contagious variant tends to 
increase it. The balance between these opposite effects 
is crucial and has to be accurately followed.  
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values.    
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group immunity should be better understood as a 
condition which is (temporarily!) fulfilled when S(t) is 
smaller than the threshold value 1/ R0 (t). In absence of 
vaccination effects this is strictly equivalent to Reff (t) < 
1. The additional immunity created by large scale 
vaccination will make it different (see Sec. 2.4).   

2.2 Adaptation of the uncorrected SIR model       

2.2.1 Hidden part and visibility ratio   

A first adaptation was required by to the large 
number of asymptomatic carriers, which was first 
recognized by the Pasteur Institute in April 2020 [51], 
and led us an analysis exclusively based on the decease 
data.  

We therefore completed the master equation (1), 
with the deceased fraction, D(t) = l R(t),                    (2) 
where l is the lethality ratio, that is, the probability for a 
contaminated person - non-vaccinated - to decease.  This 
lethality ratio is strongly age-dependent, it drastically 
increases as a function of age. 

Meanwhile, we observed that the adjusted size of the 
cluster was continuously increased at each new analysis; 
we were also puzzled by the incredible diversity of the 
lethality rates reported for various countries. We thought 
that this diversity was due to the existence of 
asymptomatic carriers and introduced the idea of the 
“hidden part” of the pandemics [CC 4],  

Due to the presence of this hidden part, we changed 
the basic assumptions of the analysis, as follows: (i) the 
case data were corrected by an adjustable constant factor 
which is the visibility ratio” of the pandemics quoted in 
the previous section; (ii) the lethality ratio was initially 
fixed: l =0.53 % in agreement with a detailed report  of 
the Pasteur Institute [52], and later on 1.06% [CC 23] 
according to a more extended study [53] ;   (iii) the total 
population (France = 67 million inhabitants) was 
accounted for; (iv) last, but not least, the contamination 

rate βi(t) was no longer a constant. To avoid handling 
too many free parameters, we used a stepped β (t) 
function with 10-day steps (5-day, later on). 

We show in Figure 3 an example of such an analysis 
when the first wave was just over. The value of the 
visibility ratio was adjusted so as to match both the case 
and death data.  

  
Fig. 3. The first wave in France, dated late May 2020, adapted 
from [CC 4]. Complete lock-in was effective since mid-march.  

The main result shown in Figure 3 is the decrease of 
the reproduction rate, associated with the decay of the 
first wave. This decay is due to the complete lock-in 
from mid-March to mid-May. The visibility ratio, taken 
here as a constant, is extremely small, a few % only, and 
was confirmed by the detailed report of the Pasteur 
Institute in May 2020 [52].  

When studying the following phase of the pandemic, 
we found that such a simultaneous fit of the death and 
case data was no longer possible. Indeed, the value of 
the visibility ratio irreversibly increased for each new 
wave. We then decided to fit a single set of data; to start 
with, the decease data, because they were consistent 
with the seasonal mortality data (Sec. 1.4). Then the 
visibility ratio became another output of the analysis, 
time dependent, defined as the total number of 
confirmed cases divided by the calculated total number 
of infected persons. This ratio presently reaches around 
66 % (detailed data in [CC 43]).  

 

2.3 The corrected SIR-tcc model    

By the end of the year 2020 our attention was drawn to 
a contribution to the French Ecole Polytechnique alumni 
review [54] which pointed out the lack of relevance of 
the uncorrected SIR model, where the recovery from (or 
death after) the contamination of a given person is a 
random process governed by a transition rate.  The main 
drawback of this assumption is that the recovering 
probability of a given person is maximum on the very 
day of contamination and smoothly decreases as a 
function of time. This is totally against the idea of an 
average recovery time, which is commonly admitted in 
the medicine field (for instance, around 14 days for the 
covid-19 disease).  

It is very surprising that the obvious deterministic 
character of I → R process was clearly accounted for so 
lately (the model is 90-years old).  For our part, we 
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turned to the duly corrected version and termed it SIR-
tcc (for constant contagiousness time).  

 
Fig. 4. The corrected model (SIR-tcc). Ic stands for the total 
infected fraction 

 
The change in the spreadsheet organization was 

straightforward [CC 23] by defining delayed output 
fluxes from I(t) to R(t) and D(t), which merely are the 
input flux at time (t - delay), multiplied by the respective 
(1 - l) and l  factors. The delay value was taken in 
continuity of the previous model, that is, 1/ϒ, same for 
all and constant in time (15 days).  

In practice, the output flux was taken as a 7-day 
average value in order to smooth eventual 
discontinuities generated by the model [CC 24]. 

2.3.1 Comparison to the previous model       

As evidenced by one of us (FXM) [55], the uncorrected 
SIR model provides a too weak and delayed response to 
the variations of the β-parameter. 

If  β increases, the uncorrected SIR model equations 
lead to overestimate the number of recoveries and 
deaths, as they do not take in account the delay between 
the  S → I and I → R   processes for an given individual. 
As a consequence, the SIR computed number of 
infectious is too small. 

For the same reason, if β decreases, the uncorrected 
SIR model equations lead to underestimate the number 
of recoveries and deaths: the computed number of 
infectious is too high. 

The uncorrected SIR model is not reactive enough to 
β variations. No doubt the SIR-tcc model definitely has 
to be preferred.  

Accordingly, the analysis of the data using the SIR-
tcc model will obviously provide results different from 
those of the uncorrected model. This is illustrated in 
Figure 5.  
  
 

 
 

Fig. 5. Comparison of the Reff (t) curves derived from obtained 
with the uncorrected SIR and SIR-tcc models, for the same set 
of (simulated) data.  
 

For convenience the data shown in Figure 5 were 
generated using the uncorrected model, with a schematic 
squared-shaped (t) involving two contamination 
waves. The asymmetric shape of the resulting peaks is 
worth noting and contrasts with the symmetrical shape 
obtained with the corrected model (not shown here).  

The responses of the SIR and SIR-tcc analyses of 
these simulated data, as shown in Figure 5, are sizably 
different: the uncorrected model analysis overestimates 
the fitted β(t) curve – with respect to the corrected model 
analysis - so as to compensate its weaker response to -
variations. The uncorrected model analysis delays the 
fitted (t) curve, a far from intuitive consequence of its 
delayed response to (t) variations. The latter effect is 
larger on the decreasing side of the peaks.   

 In addition, we found that the manual adjustment 
procedure was much easier with the SIR-tcc model. This 
might be a consequence of the endless character of the 
recovery process, which induces strong mutual 
influences between the values of the adjustable 
parameters during the fitting procedure.    

2.3.2  Results for France       

The results for France, recently updated, are shown 
below: 

 
Fig. 6. The successive 5 waves of the pandemic in France, 
analysed through the SIR-tcc model, adapted from [CC 43].  

6

EPJ Web of Conferences 263, 01002 (2022)	 https://doi.org/10.1051/epjconf/202226301002
8th Complexity-Disorder Days 2021



turned to the duly corrected version and termed it SIR-
tcc (for constant contagiousness time).  

 
Fig. 4. The corrected model (SIR-tcc). Ic stands for the total 
infected fraction 

 
The change in the spreadsheet organization was 

straightforward [CC 23] by defining delayed output 
fluxes from I(t) to R(t) and D(t), which merely are the 
input flux at time (t - delay), multiplied by the respective 
(1 - l) and l  factors. The delay value was taken in 
continuity of the previous model, that is, 1/ϒ, same for 
all and constant in time (15 days).  

In practice, the output flux was taken as a 7-day 
average value in order to smooth eventual 
discontinuities generated by the model [CC 24]. 

2.3.1 Comparison to the previous model       

As evidenced by one of us (FXM) [55], the uncorrected 
SIR model provides a too weak and delayed response to 
the variations of the β-parameter. 

If  β increases, the uncorrected SIR model equations 
lead to overestimate the number of recoveries and 
deaths, as they do not take in account the delay between 
the  S → I and I → R   processes for an given individual. 
As a consequence, the SIR computed number of 
infectious is too small. 

For the same reason, if β decreases, the uncorrected 
SIR model equations lead to underestimate the number 
of recoveries and deaths: the computed number of 
infectious is too high. 

The uncorrected SIR model is not reactive enough to 
β variations. No doubt the SIR-tcc model definitely has 
to be preferred.  

Accordingly, the analysis of the data using the SIR-
tcc model will obviously provide results different from 
those of the uncorrected model. This is illustrated in 
Figure 5.  
  
 

 
 

Fig. 5. Comparison of the Reff (t) curves derived from obtained 
with the uncorrected SIR and SIR-tcc models, for the same set 
of (simulated) data.  
 

For convenience the data shown in Figure 5 were 
generated using the uncorrected model, with a schematic 
squared-shaped (t) involving two contamination 
waves. The asymmetric shape of the resulting peaks is 
worth noting and contrasts with the symmetrical shape 
obtained with the corrected model (not shown here).  

The responses of the SIR and SIR-tcc analyses of 
these simulated data, as shown in Figure 5, are sizably 
different: the uncorrected model analysis overestimates 
the fitted β(t) curve – with respect to the corrected model 
analysis - so as to compensate its weaker response to -
variations. The uncorrected model analysis delays the 
fitted (t) curve, a far from intuitive consequence of its 
delayed response to (t) variations. The latter effect is 
larger on the decreasing side of the peaks.   

 In addition, we found that the manual adjustment 
procedure was much easier with the SIR-tcc model. This 
might be a consequence of the endless character of the 
recovery process, which induces strong mutual 
influences between the values of the adjustable 
parameters during the fitting procedure.    

2.3.2  Results for France       

The results for France, recently updated, are shown 
below: 

 
Fig. 6. The successive 5 waves of the pandemic in France, 
analysed through the SIR-tcc model, adapted from [CC 43].  

 
Fig. 7. The compared evolutions of the computed fraction S(t) 
(solid black line) and of its group immunity threshold (broken 
green line), for France. The situation of group immunity has 
been reached several times, when the solid black line was 
below the slashed green one; the situations where group 
immunity was not reached are been pointed out by red dashed 
frames. Adapted from [CC 43].  

2.3.3 Alternative indicators       

Alternative indicators such as the daily number of 
confirmed cases, hospitalisations or admissions to the 
intense care sections may be used. These data 
presumably are almost as reliable as the decease ones. 
We have treated the hospitalization data in France, in the 
same way we did for the decease data. The lethality ratio 
merely is substituted by a severity ratio assumed to be 
time-independent and the same for all. The value given 
to this severity ratio (4 %) was determined in order to 
yield visibility ratio values close to those obtained by the 
decease-based analysis. [CC 30] 
 

 
 
Fig. 8. An independent analysis based on the daily 
hospitalization data of France. Note that the Reff(t) curve is 
similar to that obtained from the decease data (figure 6). 
Updated from [CC 30].  
 

The Reff (t) curves displayed on figures 6 and 8 are 
similar. A complete comparison of the curves associated 
with the possible 3 indicators (cases, hospitalizations, 
deaths) will be presented in Sec. 3, Figure 16.   

2.3.4 Apparent lethality and severity ratios        

Daily hospitalization and death data may be directly 
compared to the case data, provided that a convenient 
delay is introduced. We denoted these ratios “apparent” 
because they refer to an indicator – the number of cases 
– which is subject to the absence of asymptomatic cases. 
The apparent lethality ratio is the number of deaths on 
day d, divided by the number of cases confirmed on day 
d – 14 (elsewhere denoted the case fatality rate). The 
apparent severity ratio is the number of persons 
hospitalized on day d, divided by the number of cases 
confirmed on day d – 2 (to start with: confirmed on day 
d-14, but this excessive delay value was corrected later 
on [CC 43]).  Both ratios are impacted by the intensity of 
the testing campaign.  

 
Fig. 9. The evolution of the apparent lethality ratio in France.  
The large values prior to day 200 are attributed to the sufficient 
number of tests.  The increase in the ratio after day 200 is 
assigned to the onset of variants (Beta, and later on Delta). The 
sizeable decrease after day 300 reflects the efficiency of a 
massive vaccination campaign targeted to the   most fragile or 
eldest persons. Updated from [CC 30]. 

  
 
Fig. 10. The evolution of the apparent severity ratio in France. 

The global decrease after day 300 confirms the efficiency 
of vaccination reported in the previous figure. Additional 
features around days 300 and 480 might be assigned to 
concomitant weaknesses of the testing activity. Adapted 
and updated from [CC 30].   

 

7

EPJ Web of Conferences 263, 01002 (2022)	 https://doi.org/10.1051/epjconf/202226301002
8th Complexity-Disorder Days 2021



2.4 The SIR-tcc-vaccination extension     

Worldwide vaccination campaigns started on the very 
end of 2020. The campaign was rather massive in France 
and reached a high coverage value (number of 
vaccinated persons / total population) close to 75 %, see   
Figure 10 (in previous section).    

It appeared that this campaign has significantly 
hindered the larger contagiousness (by 50 %) of the so-
called British (Alpha) variant with respect to the initial 
virus. In terms of protection against severe forms of the 
disease leading to intensive care sections and ultimately, 
to death, efficiency ratios up to 90% or more were 
reported, see Sec. 1.3. But, for a long time, little was 
known about the protection against contamination. 
Thanks to a detailed study of the correlation between the 
vaccinal coverage as a function of age and the relative 
intensity of the fourth wave [CC 42] we reached the 
conclusion that the protection against contamination 
was lesser, say 60-70 % smaller. It seems that the 
reduction of the viral load due to vaccination is the 
mechanism which leads to the large decrease in the 
probability of severe forms and death.  

The model extension basically consisted in creating 
a second sane fraction for the vaccinated persons, and 
splitting the infectious fraction according to their 
protection or not against severe forms and death, see 
figure 11. 

 

 
  
Fig. 11. Scheme of SIR-tcc-vaccination model. Svac, Snovac, 

respectively stand for the vaccinated or non-vaccinated sane 
fractions, Ipro, Iexp for the protected or exposed infectious 
fractions, and ρdc, ρcont for the protection ratios against decease 
and against contamination.  

 
The flux  Sno-vac → Svac = Sno_vac(t) x d Couv(t)/dt    (3) 
 

where Couv (t) = is the vaccinal coverage (2-doses 
here). We assume for simplicity the same contamination 
rate β(t) for both Ipro, Iexp. The equations follow 
straightforwardly and can be found in [CC 43]. 
 

  
Fig. 12. The France deceased data, analysed through the SIR-
tcc-vaccination model, adapted from [CC 43]. To be 
compared to Figure 6. 

 
 
Fig. 13. The sane fraction S(t) (solid black line) and of its 
group immunity threshold (broken green line), obtained 
through the SIR-tcc-vaccination model. Adapted from [CC 
43]. To be compared to Figure 7. It is worth noting that the 
infected fraction I(t) presently is in large excess of the peak of 
the previous wave. 
  

An obvious change provided by the SIR-tcc-vac 
model is the lowering of both the S(t) and threshold 
value curves (compare Figures 7, 13). The combination 
of both effects finally leads to hinder the condition of 
group immunity. In other words, the analysis discarding 
vaccination effect sizably overestimates the possibility 
of reaching a future group immunity.   

The Reff(t) curve reported in Figure 12 only shows 
minor differences with respect to Figure 6. These 
differences presumably are due to the imperfect 
character of the manual adjustment procedure. An 
automatic fitting procedure might be helpful here.   

On the contrary, the R0(t) values are visibly 
increased by the account of the vaccination effect, see 
Figure 14. 
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Fig. 14. The “true” reproduction rate, R0(t) obtained 

through the SIR-tcc and SIR-tcc-vaccination models, for 
France, adapted from [CC 43]. 

 
R0(t), corrected for the vaccination effect, is 

presently larger than it was at the beginning of the 
pandemics. This statement means that the present social 
restrictions, however quite severe, hardly balance the 
contagiousness excess of the present variant (). 

3 Discussion  
Numerous research works are presently carried out by 
Universities or Institutes. They are mainly based on 
sophisticated models which aim to reveal all various 
factors which may govern the dynamics of the 
pandemic. Understanding these factors is needed to 
make sensible predictions of the long-term evolution of 
the pandemic.  

Our approach is slightly less ambitious, it only 
allows short-term extrapolations. However, the analysis 
of the past evolution, like as any historic research work, 
provides a posteriori measurements of the effect of 
social decisions such as lock-in, curfew, vaccination, 
sanitary pass… but this is a sociologic matter which is 
not in the very scope of the present work.  

3.1.1 The CovidTracker website approach       

Meanwhile, the huge amount of data was processed 
in several websites [39, 40], so as to provide an easier 
access to the pandemic evolution through maps, graphs 
and figures. The CovidTracker site [39] reports an 
alternative determination of the effective reproduction 
rate, see Figure 15:  

 

  
Fig. 15. The effective reproduction rate, derived from the 
relative variations of indicators (case, hospitalisations), after 
[39] dated 2021/12/08.  

   
Here, Reff(t) is assumed to be the relative variation of 

any indicator over 7 days (of course using 7-day moving 
averages). The relevance of this model-free method was 
a posteriori justified by the close compliance with the 
values quoted by Santé Publique France [36], that is, 
determined according to the Cori method [50] by the 
Pasteur Institute simulation group, see for example [56]. 
These results are also in good compliance with those of 
the present analysis. This simple approach required, of 
course, the tuning of the time interval over which the 
relative variation is calculated. We noticed that this 7-
day interval exactly matches half the contagiousness 
time of the SIR-tcc model (14 days). A sensible 
explanation is that a given contagious person may have 
been contaminated by a previous one all along its 
contagiousness time, that is, after 7 days in average [CC 
40]. 

Such a model-free determination of Reff(t) avoids the 
hazardous step of manual fitting. We used it to illustrate 
the various time shifts associated with the possible 
indicators, see Figure 16. 

 

 
 
Fig. 16. An example of Reff(t) variations determined from the 
CovidTracker method. The hospitalization peak is clearly 
delayed with respect to the case peak, by roughly 6-7 days. The 
decease peak - split - occurs obviously later on. Adapted from 
[CC 41] 
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3.1.2 The impact of age     

Since the very beginning, it was observed that most of 
deceases were those of aged persons. The younger 
persons were thought to be almost free from severe 
forms, and even from contamination. This is no longer 
true, and presently the number of cases drastically 
increases in the young population. We have followed the 
evolution of the average age for the various steps of the 
disease, see figures 17, 18, adapted from [CC 39]. 
.  

Fig. 17. Evolution of the average ages for contamination and 
decease. EHPAD stands for Hospitals for Aged or Dependent 
Person.   

 
The decrease in the average decease age, between days 
300-500 is assigned to the impact of the vaccination 
campaign targeted to the eldest population. The final 
increase may reveal a sizable weakening of the vaccinal 
protection, which the reason why a third vaccine dose 
was decided in most countries. Note that that the case 
curve also exhibited a strong increase (weakening of the 
vaccinal protection against contamination), before a 
final decrease which may reveal a recent change in the 
virus circulation, which now is extremely active in the 
younger population.  
    

 
Fig. 18. Evolution of the average ages for hospitalization, 
admission in reanimation care service, and exit.  
 

The recent increase, over the last two months, shows that 
the present (5th) wave again induces severe forms of the 
covid disease in the eldest population.  

The different behaviours of the various age ranges 
are conveniently illustrated in the CovidTracker site, see 
Figure 19.  
 

 
Fig. 19. Evolution of the incidence rate (number of new cases 
over the last 7 days per 100 thousand persons), as a function 
of time (horizontal scale), for the various age ranges (vertical 
scale). The colour scale spans from green to dark red, on 
increasing values of the incidence rate. Adapted from [39]  
  
Figure 9 covers waves 3, 4 and 5, which are featured by 
dark areas. Remarkably wave 4 is peaked on the 20-29 
range, while the other waves have a wider extension. 
The peculiar character of the 4th wave is interpreted as a 
consequence of the unachieved character of the 
vaccination campaign when wave 4 began. Details are 
given below. On the contrary wave 5 is widespread over 
all ages. The intense contamination of the 0–9-range is 
a true concern because this range is not yet allowed for 
vaccination in our country. It is worth mentioning that 
several countries already allowed it.  

We have more precisely documented [CC 42] the 
effect of the vaccination coverage at the beginning of 
wave 4 by comparing the data of cases, hospitalizations 
and deceases, cumulated over two periods: period 1, 
before the beginning of the vaccination campaign, that 
is, before day 300, and period 2 associated with wave 4, 
that is, from day 488 to day 579.  The ratios of the data 
period 2 / period 1 are plotted in figure 20 for each age 
range, as a function of the vaccine coverage on day 300. 
As the testing activity was extremely different in the 
various age ranges, we corrected the case ratio, by 
dividing it by the ratio of the total test numbers in each 
age range.  

 

 
Fig. 20. The ratio of cumulated data over periods 1 and 2 (see 
Figure 19), plotted versus the vaccinal coverage of the various 
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scale). The colour scale spans from green to dark red, on 
increasing values of the incidence rate. Adapted from [39]  
  
Figure 9 covers waves 3, 4 and 5, which are featured by 
dark areas. Remarkably wave 4 is peaked on the 20-29 
range, while the other waves have a wider extension. 
The peculiar character of the 4th wave is interpreted as a 
consequence of the unachieved character of the 
vaccination campaign when wave 4 began. Details are 
given below. On the contrary wave 5 is widespread over 
all ages. The intense contamination of the 0–9-range is 
a true concern because this range is not yet allowed for 
vaccination in our country. It is worth mentioning that 
several countries already allowed it.  

We have more precisely documented [CC 42] the 
effect of the vaccination coverage at the beginning of 
wave 4 by comparing the data of cases, hospitalizations 
and deceases, cumulated over two periods: period 1, 
before the beginning of the vaccination campaign, that 
is, before day 300, and period 2 associated with wave 4, 
that is, from day 488 to day 579.  The ratios of the data 
period 2 / period 1 are plotted in figure 20 for each age 
range, as a function of the vaccine coverage on day 300. 
As the testing activity was extremely different in the 
various age ranges, we corrected the case ratio, by 
dividing it by the ratio of the total test numbers in each 
age range.  

 

 
Fig. 20. The ratio of cumulated data over periods 1 and 2 (see 
Figure 19), plotted versus the vaccinal coverage of the various 

age ranges on the beginning of period 2, with the fit of their 
linear correlations. Adapted from [CC 42] 
 
A clear dependence upon the age is obtained for all 
indicators, which suggests a linear correlation, except 
for the oldest two age ranges. A possible reason for the 
peculiar behaviour of the upper age tranches might be a 
reinforcement of the sanitary protection, with respect to 
wave 1; indeed, on the beginning of the pandemic, 
mortality was extremely high in the medical nursing 
homes (EHPAD), presumably because of an obvious 
lack of knowledge and experience in front of an 
unknown disease.  

Whatsoever, the linear fits of the curves of Figure 20 
leads to correlation slopes which shows that vaccination 
provides different degrees of protection against 
contamination (case data), severe forms (hospitalization 
data) and decease. In particular, the vaccination 
efficiency against contamination reveals to be 
approximately 25 % smaller than against severe forms 
and decease. Since efficacy against decease and severe 
forms is close to 90 % (sec. 1.3); against contamination 
it should be in the range 60-70 %. This value remains to 
be confirmed by real life data.   

3.1.3 Summary of the main results         

Important features were revealed by the present analysis 
which combined model improvements and a critical 
analysis of “experimental” data. The SIR model was 
corrected for a more sensible approach of the I → R 
process. We recently completed it in order to account for 
vaccinal immunity against severe forms and decease, 
and independently against contagiousness. The 
application to the French data showed the reality of this 
immunity, at different protection degrees. We also 
showed that presently - on the manuscript submission 
date - the group immunity condition is far from being 
fulfilled.  

We stress on the need for a critical analysis of the 
data (this holds any kind of experimental data). The 
most useful result of our investigation may be the 
recognition of the hidden part of the pandemic, leading 
to bias any analysis exclusively based on the case data 
(in other words, based on the incidence ratio). We 
preferred a decease-based analysis, casually completed 
by analyses based on hospitalisation data.   

The main outputs of our calculations were the 
reproduction rates: the effective rate Reff(t) characterizes 
the evolution of the dynamics while the “true” R0(t) 
reveals the combined evolutions of the (average) 
individual behaviour and of the virulence of the 
prominent variant.  

We pointed out the interest of additional information 
derived from raw data, for instance in the terms of 
“apparent severity” and “apparent lethality ratios”, we 
introduced.  

A less intuitive comparison of different periods of 
the pandemic allowed drawing correlations between the 
impact of the pandemic and the degree of vaccinal 
coverage, on the occasion of wave 4 which occurred at 
a time when the coverage degree was strongly age-
dependent.  

We have provided figures which illustrate the 
successive waves of the pandemic. We did not pretend 
to explain their detailed features, obviously impacted by 
the various regulations (lock-in, curfew, travel 
restrictions, homework, closure of non-essential 
activities, sanitary pass …). Such explanations require a 
detailed modelling which is only tractable by large 
institutions.  

4 Conclusion  
As reported in the previous section (3.1.3) the simple 
SIR mean-field model, corrected and completed for 
vaccinal immunity, has provided interesting results 
upon the average dynamics of the pandemic at the 
national level. However, we have used an extremely 
small part of the available data, which are worldwide 
and declined according multiple criteria. We have often 
analysed the data of foreign countries and twice those of 
the age ranges in France [CC 22-23, CC 33]. In all cases 
each country or age range was treated independently 
from the others.    

A generalized approach involving several countries 
or age ranges would require introducing the possible 
interactions between them. Obviously, the resolution of 
such a problem with input parameters in the form of a βij 
(t) matrix is not tractable by the means of Excel 
spreadsheets. This consequently is another story.   

As for us, modesty is required. We intend to continue 
the current chronicle, accessible as usual, as long as the 
COVID-19 disease is not mastered.  Presently, the 
growth rhythm of wave 5 seems to slow down. 
However, the Omicron variant transmissibility, 
lethality, and vaccines response are not well 
characterised. 

 
Acknowledgements are due to our friends: Henri Lorain and 
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